
RISC MICROPROCESSOR ARCHITECTURE

IMPLEMENTING MULTIPLE TYPED REGISTER SETS

10 Inventors

:

Sholong Chen

Sanjiv Garg

Derek J. Lentz

Le Nguyen

rv5/4l>

15 CROSS-REFERENCE TO REI^ATBD APPLICATIONS

Applications of paxtlcular Interest to the present

application. Include:

4. tOGH-

^SC^Qrial No,- t±ir^
,

f^A yirpiya^—<=>t- a T ^ ;

"--2r5 BXTENSrafc&JSXSC MICBQBRQCESSQR AIU;HITCCTUR£^r--SC/S^^^baJ,

WP2/RCC/StiOV79SS.004 -Paft I

Atiornti Oackct No.: S1IOS7988/WCF/G8R/RCC

\

-2-

IflCRQgReeESSOH ARCHITECTURE WITH TSOt^ED

-hy YotaiUl Mlyayama;

ICTURC Il-irLDMCHTinG FAOT TRAP

5 ^ AMD EXCErTIOM -STATE ^ bU/SerXal Mu

Qaang Traiig ;

iJRlNTER CONTRQIiIiEri^—SC/geirial -^o

-by DergK Lentz; antt"

,6. MICRQgReeEbSUR ARUHITECTURE CAJ^ABLE OF SWPORTTNG

fllO ^-MOiiTirLD IICTEIlOGCimOOG rROGESSORS^ SC/3ei,lal Hur , filed

Jay Doirek Iicnta

The above-identified Applications^ are hereby incorporated

herein by reference^ their collective teachings being part of the

15 BACKGROUND OF THK TWENT!ON

Field of the Tnventton

The present invention relates generally to microprocessors,

and more specifically to a RISC microprocessor having plural,

symmetrical sets of registers.

20 Description of tAe Background

In addition to the usual complement of main memory storage

and secondary pemxianent storage, a microprocessor-based computer

system typically also includes one or more general puxrpose data

25 flags. Previous systems have included integer registers for

W?2/RCC/SllOS/798t. 004
Attoraii Oockit Mo.: SM0S79«t/IICr/GBR/RCC

J

-3-

hold±ng integer data and floating point registers for holding

floating point data. Typically^ the status flags ace us^d for

indicating certain conditions resulting from, the mdst recently

executed operation. There generally are status flags for

indicating whether, in the previous operation: a cariry occurred,

a negative nximber resulted, and/or a zero resulted.

These flags prove useful in determining the outcome of

conditional branching within the flow of program control. For

example, if it is desired to compare a first number to a second

number and upon the conditions that the two are eqaial, to branch

to a given subroutine, the microprocessor may compare the two

numbers by subtracting one from the other, and setting or

clearing the appropriate condition flags. The numerical value

of the result of the subtraction need not be stored. A

conditional branch instruction may then be executed, conditioned

upon the status of the zero flag. VThile being simple to

implement, this scheme lacks flexibility and power. Once the

comparison has been performed, no further numerical or- other

operations may be performed before the conditional branch upon

the appropriate flag; otherwise, the intervening instructions

will overwrite the condition flag values resulting from the

comparison, likely causing erroneous branching. The scheme is

further complicated by the fact that it may be desirable to form

greatly complex tests for branching, rather than the simple

ec[uality example given above.

For example, assume that the program should branch to the

subroutine only upon the condition that a first number is greater

1KP2/RCC/S1I0S/ 7988. 004 -/»ge 3- /
AttorncT Docket No.: SU0S7988/u:r/GBR/RCC / /

)

-4-

than a second number, and a third number is less than a fourth

number, and a fifth number is equal to a sixth nxmber-. It would

be necessary for previous microprocessors to perform a lengthy

series of comparisons heavily interspersed with conditional

branches, A particularly . undesirable feature of this serial

scheme of comparing and branching is observed in any

microprocessor having an instruction pipeline.

In a pipelined microprocessor, more than one instruction is

being executed at any given time, with the plural instructions

being in different stages of execution at any given moment- This

provides for vastly improved throughput. A typical pipeline

microprocessor may include pipeline stages for: (a) fetching an

instruction, (b) decoding the instruction, (c) obtaining the

instruction's operands, (d) executing the instruction, and

(e) storing the results. The problem arises when a conditional

branch instmiction is fetched. It may be the case that the

conditional branch's condition cannot yet be tested, as the

operands may not yet be calculated, if they are to result from

operations which are yet in the pipeline. This results in a

"pipeline stall", which dramatically slows down the processor.

Another shortcoming of previous microprocessor-based systems

is that they have included only a single set of registers of any
«

given data type. In previous architectures, when an increased

number of registers has been desired within a given data type,

•the solution has been simply to increase the size of the single

set of those type of registers. This may result in addressing

problems, access conflict problems, and symmetiry problems.

VP2/RCC/SUOS/7988. 004
Attorner Docket No.: SUOS7988/UCF/G8R/RCC

)

-5-
I

On a similar note, previous architectures have restricted

each given register set to one respective numerical ^,data type.

Various prior systems have allowed general purpose Registers to

hold either numerical data or address "data"/ but the present

application will not use the term "data" to include addresses*

What is intended may be best understood with reference to two

prior systems. The Intel 8085 microprocessor includes a register

pair "HIi* which can be used to hold either two bytes of numerical

data or one two-byte address. The present application's

improvement is not directed to that issue. More on point , the

Intel 80486 microprocessor includes a set of general purpose

integer data registers and a set of floating point registers,

with each set being limited to its respective data type, at least

for purposes of direct register usage by arithmetic and logic

units

.

This proves wasteful of the microprocessor's resources, such

as the available silicon area, when the microprocessor is

performing operations which do not involve both data types . For

example, user applications. frec[uently involve exclusively integer

operations, and perform no floating point operations whatsoever,

mien such a user application is run on a previous microprocessor

which includes floating point registers (such as the 80486),

those floating point registers remain idle during the entire

execution.

Another problem with previous microprocessor register set

architecture is observed in context switching or state switching

between a user application and a higher access privilege level

)(ifP2/RCC/SttOS/7988. 004 -P

Attorney Oocktt No.: SU0S7988/UCF/GBR/RCC >

-6-

entity such as the operating system kernel. When control within

the microprocessor switches context, mode, or state, the

operating system kernel or other entity to which* control is

passed typically does not operate on the same data which the user

application has been operating on. Thus, the data registers

typically hold data values which are not useful to the new

control entity but which must be maintained until the user

application is resumed. The kernel must generally have registers

for its own use, but typically has no way of knowing which

registers are presently in use by the user application. In order

to make space for its own data, the kernel must swap out or

otherwise store the contents of a predetermined subset of the

registers. This results in considerable loss of processing time

to overhead, especially if the kernel makes repeated, short-

duration assertions of control.

On a related note, in prior microprocessors^ when it is

required that a "grand scale" context switch be made, it has

been necessary for the microprocessor to expend even greater

cunounts of processing resources, including a generally large

number of processing cycles, to save all data . and state

information before making the switch. When context is switched

back, the same perfoznoaance penalty has previously been paid, to

restore the system to its former state. For example, if a

microprocessor is executing two user applications, each of which

rec[uires the, full complement of registers of each data type, and

each of which may be in various stages of condition code setting

operations or numerical calculations, each switch from one user

WP2/RCC/SUOS/79a8.O04 (-Page J
Attorner Docket No.: SUOS7S88/UCF/G:R/RCC /

-7-

application to the other necessarily Involves swapping or

otherwise saving the contents of every data register and state
*

flag in t:lxe system. This obviously involviss a great deal of

operational overhead, resulting in significant performance

degradation, particularly if the main or the secondary storage

to which the registers must be saved is significantly slower than

tbe microprocessor itself.

Therefore, we have discovered that it is desirable to have

an improved microprocessor architecture which allows the various

component conditions of a complex condition to be calculated

without any intervening conditional branches • We have further

discovered that it is desirable that the plural simple conditions

be calculable in parallel, to improve throughput of the

microprocessor.

We have also discovered that it is desirable to have an

architecture which allows multiple register sets within a given

data type.

Additionally, we have discovered it to be desirable for a

microprocessor's floating point registers to be usable as integer

registers, in case the available integer registers are inadequate

to optimally to hold the necessary amount of integer data.

Notably, we have discovered that it is desirable that such

re-typing be completely transparent to the user application.

We have discovered it to be highly desirable to have a

microprocessor which provides- a dedicated subset of registers

which are reserved for use by the kernel in lieu of at least a

subset of the user registers, and that this new set of registers

WP2/RCC/SUOS/7S58.004 /Uit j/
Attorney Docket Mo.: SMOS7988/WCF/G8R/RCC / /

-8-

shoiild. be addressable in exactly the same manner as the register
*

subset which they replace, in order that the kernel may use the

same register addressing scheme as user applications. We have

further observed that it is desirable that the switch between the

two sxibsets of registers recjuire no microprocessor overhead

cycles, in order to maximally utilize the microprocessor's

resources.

Also, we have discovered it to be desirable to have a

microprocessor architecture which allows for a "grand scale-

context switch to be performed with minimal overhead. In this

vein, we have discovered that is desirable to have an

architecture which allows for plural banks of register sets of

each type, such that two or more user applications may be

operating in a multi-tasking environment, or other "simultaneous"

mode, with each user application having sole access to at least

a full bank of registers. It is our discovery that the register

addressing scheme should, desirably, not differ between user

applications, nor between register banks, to maximize simplicity

of the user applications, and that the system should provide

hardware support for switching between the register banks so that

the user applications need not be aware of which register bank

which they are presently using or even of the existence of other

register banks or of other user applications

.

These and other advantages of our invention will be

appreciated with reference to the following description of our

invention, the accompanying drawings, and the claims.

WP2/RCC/SUOS/7988. 004
Attorne; Docket Ho.: S«0S7988/UCf/GBR/RCC

Page

-9-

SUMMARY OF THE INVENTION

The present invention provides a register file - system

comprising: an integer register set including first and second

subsets of integer registers, and a shadow subset; a re-typable

5 set of registers which are individually usable as integer

registers or as floating point registers; and a set of

individually addressable Boolean registers.

The present invention includes integer and floating point

Q functional units which execute integer instructions accessing the

3.0 integer register set, and which operate in a plurality of modes.

m In any mode, instructions are granted ordinary access to the

first subset of integer registers. In a first mode, instructions

"^"^ are also granted ordinary access to the second subset. However,

in a second mode, instructions attempting to access the second

^15 subset are instead granted access to the shadow subset, in a

S manner which is transparent to the instructions. Thus, routines

may be written without regard to which mode they will operate in,

and system routines (which operate in the second mode) can have

at least the second subset seemingly at their disposal , without

20 having to expend the otherwise-required overhead of saving the

second subset's contents (which may be in use by user processes

operating in the first mode)

,

The invention further includes a plurality of integer

register sets, which are individually addressable as specified

25 by fields in instructions. The register sets include read ports

and write ports which are accessed by multiplexers, wherein the

WP2/RCC/SUOS/7988. 004
Attorney Docket No.: SU0S7988/UCF/G8R/RCC

multiplexers are controlled by contents of the register

set-specifying fields in the instructions

.

One of the integer register sets is also iisa±)le as a

floating point register set. In one embodiment/ this set is

sixty-four bits wide to hold double-precision floating point

data, but only the low order thirty-two bits are used by integer

instructions.

The invention includes functional units for performing

Boolean operations , and further includes a Boolean register set

for holding results of the Boolean operations such that no

dedicated, fixed-location status flags are recjuired. The integer

and floating point functional units execute numerical comparison

instructions , which specify individual ones of the Boolean

registers to hold results of the comparisons . A Boolean

functional unit executes Boolean combinational instructions whose

sources and destination are specified registers in the Boolean

register set. Thus, the present invention may perform

conditional branches upon a single result of a complex Boolean

function without intervening conditional branch instructions

between the fundamental parts of the complex Boolean function,

minimizing pipeline disruption in the data processor.

Finally, there are multiple, identical register banks in the
«

system, each bank including the above-described register sets,

A bank may be allocated to a given process or routine, such that

the instructions within the routine need not specify upon which

bank they operate,

*

WP2/RCC/SUOS/7988.004 -Page tO-
Attorney Docket No.: SI40S7988/IICr/GeR/RCC

-11-

PRTEF DESCRIPTION OF ^HR DRAWINGS

Fig, 1 is a block diagram of the instruction execution unit

of the microprocessor of the present invention, showing the

elements of the register file,

5 Figs. 2%4 are simplified schematic and block diagrams of the

floating point, integer and Boolean portions of the instruction

execution unit of Fig. 1, respectively.

Figs. 5-6 are more detailed views of the floating point and

O integer portions, respectively, showing the means for selecting

between register sets.

m Fig. 7 illustrates the fields of an exemplary microprocessor

f5 instruction word executable by the instruction execution unit of

^ Fig. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. REGISTER FILE

Fig. 1 illustrates the basic components of the instruction

execution unit (lEU) 10 of the RISC (reduced instruction set

20 computing) processor of the present invention. The lEU 10

includes a register file 12 and an execution engine 14. The

register file 12 includes one or more register banks 16-0 to

16-n. It will be understood that the structure of each register

bank 16 is identical to all of the other register banks 16.

25 Therefore, the present application will describe only register

bank 16-0. The register bank includes a register set A 18, a

register set FB 20, and a register set C 22.

WP2/RCC/SUOS/7988. 004
Attorney Oockct Ho.: SUOS7988/UCF/GeR/RCC

J

m
-12-

In general, the invention may be cliaracteirized as a RISC

microprocessor having a register file optimally configured for

use in the execution of RISC instructions/ as opposed to

conventional register files which are sufficient for use in the

5 execution of CISC (complex instruction set computing)

instructions by CISC processors. By having a specially adapted

register file, the execution engine of the microprocessor's lEU

achieves greatly improved performance, both in terms of resource

utilization and in terms of raw throughput. The general concept

10 is to tune a register set to a RISC instruction, while the
ST

3 specific implementation may involve any of the register sets in

J the architecture.

3 A. Register Set A

e15 Register set A 18 includes integer registers 24 (RA[31:0l),

I
each of which is adapted to hold an integer value datum. In one

^
embodiment, each integer may be thirty-two bits wide. The RA[]

^ integer registers 24 include a first plurality 26 of integer

registers (RA(23:01) and a second plurality 28 of integer

20 registers (RA(31:24l). The RAt] integer registers 24 are each

of identical structure, and are each addressable in the same

manner, albeit with a unique address within the integer register

set 24. For example, a first integer register 30 (E^(Ol) is

addressable at a zero offset within the integer register set 24.

25 RA[01 always contains the value zero. It has been observed

that user applications and other programs use the constant value

zero more than any other constant value. It is, therefore,

WP2/RCC/SUOS/7988. 004 -Page
Attorney Docket Ho.: SttOS7988/MCF/GBR/RCC

f

-13-

deslrable to have a zero readily available at all times, for

clearing, comparing, and otber purposes* Another advantage of

having a constant, hard-wired value in a, given register,

regardless of the particular value, is that the given register

5 may be used as the destination of any instmiction whose results

need not be saved.

Also, this means that the fixed register will never be the

cause of a data dependency delay. A data dependency exists when

O a -slave" instruction requires, for one or more of its operands,

to the result of a "master" instruction. In a pipelined processor,

m this may cause pipeline stalls. For example, the master

O instruction, although occurring earlier in the code sequence

r" than the slave instruction, may take considerably longer to

^ execute. It will be -readily appreciated that if a slave

Jjs -increment and store" instruction operates on the result data of

£ a master "quadruple-word integer divide" instruction, the slave
^ - « A- • *

instruction will be fetched, decoded, and awaiting execution many

clock cycles before the master instruction has fi^iished

execution. However, in certain instances, the numerical result

20 of a master instiniction is not needed, and the master instruction

is executed for some other purpose only, such as to set condition

code flags. If the master instruction's destination is RA[Ol,

the numerical results will be effectively discarded. The data

dependency checker (not shown) of the lEU 10 will not cause the

25 slave instruction to be delayed, as the ultimate result of the

master instruction — zero — is already known.

WP2/RCC/SU0S/798S. 004
Attorney Docket No.: SU0S7988/UCr/G6R/RCC

-14-

The integer register set A 24 also includes a set of shadow

registers 32 (RT[31:24l). Each shadow register can hold an

integer value, and is, in one embodiment ^ also thirty-two bits

wide* Each shadow register is addressable as an offset in the
*

5 same manner in which each integer register is addressable.

"Finally, the register set A includes an lEU mode integer

switch 34. The switch 34, like other such elements, need not

have a physical embodiment as a switch, so long as the

O corresponding logical functionality is provided within the

^0 register sets. The lEO mode integer switch 34 is coupled to the

^ first subset 26 of integer registers on line 36, to the second

subset of integer registers 28 on line 38, and to the shadow

^ registers 32 on line 40. All accesses to the register set A 18

^ are made through the ZEU mode integer switch 34 on line 42. Any

access request to read or write a register in the first subset

RA[23:0] is passed automatically through the lEU mode integer

switch 34. However, accesses to an integer register with an

offset outside the first subset RA[23:0l will be directed either

to the second subset RAt31:24] or the shadow registers RT[31;24],

20 depending upon the operational mode of the execution engine 14,
,

The lEU mode integer switch 34 is responsive to a mode

control unit 44 in the execution engine 14. The mode control

\init 44 provides pertinent state or mode information about the

lEO 10 to the lEU mode integer switch 34 on line 46. When the

25 execution engine performs a context switch such as a transfer

to kernel mode, the mode control unit 44 controls the lEU mode

integer switch 34 such that any requests to the second subset

WP2/RCC/Stt0S/7988,O04 -Pagef

Attorney Docket No.: SU0S7988/UCF/GBR/RCC 1^ ^

-15-

RAI31:241 are re-directed to the shadow RT[3 1 : 24] , using the same

requested offset within the integer set. Any operating- system

kernel or other then-executing entity may thus have appajrent

access to the second subset RAt31:24l without the

otherwise-required overhead of swapping the contents of the

second subset RA[31:241 out to main memory, or pushing the second

subset RA[31:24] onto a stack, or other conventional

register-saving technique.

When the execution engine 14 returns to normal user mode and

control passes to the originally-executing user application, the

mode control unit 44 controls the lEU mode integer switch 34 such

that access is again directed to the second subset RA[31:24l.

In one embodiment, the mode control unit 44 is responsive to the

present state of interrupt enablement in the lEU 10. In one

embodiment, the execution engine 14 includes a processor status

register (PSR) (not shown) , which includes a one-bit flag

(PSR[71) indicating whether interrupts are enabled or disabled.

Thus, the line 4 6 may simply couple the lEU mode integer switch

34 to the interrupts-enabled flag in the PSR. While interrupts

are disabled, the lEU 10 maintains access to the integers

RAt23:0l, in order that it may readily perform analysis of

various data of the user application. This may allow improved

debugging, error reporting, or system performance analysis*

B. Register Set FB

The re-typable register set FB 20 may be thought of as

including floating point registers 48 (RF[31:01); and/or integer

WP2/RCC/SU0S/7988. 004 -Page/l
Attornay Oocktt No.: SUOS7988/liCf/GBR/RCC

-16-

registers 50 (RB[31:0]), When neither data type is implied to

the exclusion of the other, this application will use the term

RFB(]. In one emiDodiment, the floating point registers RF(1

occupy the same physical silicon space as the integer registers

5 RB[], In one embodiment, the floating point registers RF[1 are

sixty-four bits wide and the integer registers RB[1 are

thirty-two bits wide. It will be understood that if

double-precision floating point nximbers are not rec[uired, the

register set RFB(1 may advantageously be constructed in a

10 thirty-two-bit width to save the silicon area otherwise required

3 by the extra thirty-two bits of each floating point register.

m Each individual register in the register set RFB [] may hold

either a floating point value or an integer value. The register

y set RFB[] may include optional hardware for preventing accidental

is access of a floating point value as though it were an integer

5^ value, and vice versa. In one embodiment, however, in the

O interest of simplifying the register set RFBtl, it is simply

ffl left to the software designer to ensure that no erroneous usages

of individual registers are made. Thus, the execution engine 14

20 simply makes an access request on line 52, specifying an offset

into the register set RFB[1, without specifying whether the

register at the given offset is intended to be used as a floating

point register or an integer register. Within the execution

engine 14, various entities may use either the full sixty-four

25 bits provided by the register set RFB[1, or may use only the low

order thirty-two bits, such as in integer operations or

single-precision floating point operations.
i

P2/RCC/SUOS/7988.004 -Page 16-

Attorney Docket Ho.: SU0S7988/UCF/GBR/RCC

-17-

A first register RFB(Ol 51 contains the constant value zero,

in a form such that RB[01 is a thirty-two-bit integer zero

(OOOOi^ex) ^ sixty-four-bit floating- point z

(000000001^^3^). This provides the same advantages as described

al30ve for RA[01.

C. p«»g-tstftr Set C

The register set C 22 includes a plurality of Boolean

registers" 54 (RC(31:0l). RCtl is also known as the -condition

status register- (CSR) . The Boolean registers RC[] are each

identical in structure and addressing, albeit that each is

individually addressable at a unique address or offset within

RCI] .

In one embodiment, register set C further includes a

-previous condition status register- (PCSR) 60, and the register

set C also includes a CSR selector unit 62, which is responsive

to the mode control unit 44 to select alternatively between the

CSR 54 and the PCSR 60. In the. one embodiment, the CSR is used

when interrupts are enabled, and the PCSR is used when interrupts

are disabled. The CSR and PCSR are identical in all other

respects. In the one embodiment, when interrupts are set to bfe

disabled, the CSR selector unit 62 pushes the contents of the CSR

into the PCSR, overwriting the former contents of the PCSR, and

when interrupts are re-enabled, the CSR selector unit 62 pops the

contents of the PCSR back into the CSR. In other embodiments it

may be desirable to merely alternate access between the CSR and

the PCSR, as is done with RA(31:24l and RTl31:24l. In any event,

*

¥fP2/RCC/SUOS/7988. 004

Attorney Oock«l Mo.: SUOS7988/UCf/CBR/5CC

10

20

-18-

the PCSR. is always available as a thirty-two-bit "special

register"

.

*

None of the Boolean registers is a dedicated condition flag,

unlike the Boolean registers in previously known microprocessors.

That is, the CSR 54 dpes not include a- dedicated carry flag, nor

a dedicated a minus flag, nor a dedicated flag indicating

equality of a comparison or a zero subtraction result. Rather,

any Boolean register may be the destination of the Boolean result

of any Boolean operation. As with the other register sets, a

first Boolean register 58 (RC[Ol) always contains the value zero,

to obtain the advantages explained above for-^RACO]. In the

preferred embodiment, each Boolean register is one bit wide,

indicating one Boolean value.

15 II, EXECUTION ENGINE

The execution engine 14 includes one or more integer

functional units 66, one or more floating point functional units

68, and one or more Boolean functional units 70. The functional

units execute instructions as will be explained below. Buses 72,

73, and 75 connect the various elements of the lEU 10, and will

each be understood to represent data, address, and control paths.

A. Instruction Format

Pig, 7 illustrates one exemplary format for an integer

25 instruction which the execution engine 14 may execute. It will

be understood that not all instructions need to adhere strictly

to the illustrated format, and that the data processing system

WP2/RCC/SM0S/7988. 004 .p,ge 18-
Attornty Docket Ho.: SU0S7988/UCF/G8R/RCC

)

•

-19-

includes an instruction fetcher- and decoder (not shown) which are

adapted to operate upon varying format instructions. /The single

example of Fig. 7 ±s for ease in explanation only, •* Throughout

this Application the Identification I[l will be used to identify

various bits of the instruction, 1(31:301 are reserved for

future implementations of the execution engine 14. 1(29:261

Identify the instruction class of the particular instruction.

Table 1 shows the various classes of instructions performed by

the present invention.

~
' TABLE 1

Instruction Classes

Class Instructions
0-3 Integer and floating point

register-to-register instructions
4 Immediate constant load
5 Reserved -

6 Load
7 Store
8-11 Control Flow
12 Modifier
13 Boolean operations
14 Reserved
15 Atomic (extended)

Instruction classes of particular interest to this

Application include the Class 0-3 register-to-register

instructions and the Class 13 Boolean operations. While other

classes of instructions also operate upon the register file 12,

further discussion of those classes is not believed necessary in

order to fully understand the present invention.

1(251 is identified as BO, and indicates whether the

destination register is in register set A or register set B.

1(24:221 are an opcode which identifies, within the given

WP2/ECC/SU0S/7988. OOi

Attorney Docket No.: Si*OS7988/liCF/GBF./RCC

v_ J

-20-

instruction class, which specific function is to be performed.

For example, within the register-to-register classes,' an opcode

may specify -addition". I [21] identifies the addressing mode

which, is to be used when performing the instruction either

register source addressing or immediate source addressing.

1 120 Tie 1 identify the destination register as an offset within

the register set indicated by BO . 11151 is identified as Bl and

indicates whether the first operand is to be taken from register

set A or register set B. I [14: 10] identify the register offset

from which the first operand is to be taken. I [9: 8] identify a

function selection — an extension of the opcode 1(24:221.

H7:61 are reserved. 1(51 is identified as B2 and indicates

whether a second operand of the instruction is to be taken from

register set A or register set B. Finally, 1(4:01 identify the

register offset from which the second operand is to be taken.

With reference to Fig. 1, the integer functional unit 66 and

floating point functional unit 68 are equipped to perform integer

comparison instructions and floating point comparisons,

respectively. The instruction format for the comparison

instruction is siibstantially identical to that shown in Fig. 7,

with the caveat that various fields may advantageously be

identified by slightly different names. 1(20:161 identifies the

destination register where the result is to be stored, but the

addressing mode field I [211 does not select between register sets

A or B. Rather, the addressing mode field indicates whether the

second source of the comparison is found in a register or is

immediate data. Because the comparison is a Boolean type

WP2/RCC/SU0S/7988. 004

Attorney Docket No.: SiiOS7988/MCf/G8R/RCC

-21-

instruction, the destination register is always found in register

set C. All other fields function as shown in Fd,g. 7. In

performing Boolean operations within the integer and floating

point functional units, the opcode and function select fields

which Boolean condition is to be tested for in comparing

tbe two operands. The'integer and the floating point functional

\anits fully support the IEEE standards for numerical comparisons.

The lEU 10 is a load/store machine. This means that when

the contents of a register are stored to memory or read from.

10 memory, an address calculation must be performed in order to

determine which location in memory is to be the source or the

destination of the store or load, respectively. When this is

the case, the destination register field 1120:161 identifies the

register which is the destination or the source of the load or

15 store, respectively. The source register 1 field, 1114:101,

ifies a register in either set A or B which contains a base

address of the memory location.. In one embodiment, the source

register- 2 field, 114:0], identifies a register in set X or set

B which contains an index or an offset from the base. The

20 load/store address is calculated by adding the index to the base.

In another mode, 117:0] include immediate data which are to be

added as an index to the base.

B. op^t-atiop nf the Tnsf-ruction

—

Pxf?gvta.c>n—Qult—and
Register Sets

It will be understood by those skilled in the art that the

nteger functional unit 66, the floating point functional unit

WP2/RCC/SUOS/7988. 004
Attornef Oackct No.: SUOS7988/MCF/G8R/RCC

-22-

68, and the Boolean functional unit 70 are responsive to the

contents of the instruction class field, the opcode^* fie^ld, and

the function select field of a present - instruction being

executed.

1 • Tnteaer Operations

For example, when the instruction class, the opcode, and

function select indicate that an integer register-to-register

addition is to be performed, the integer functional unit may be

responsive thereto to perform the indicated operation, while the

floating point functional unit and the Boolean functional unit

may be responsive thereto to not perform the operation. As will

be understood from the cross-referenced applications, however,

the floating point functional unit 68 is equipped to perform both

floating point and integer operations. Also, the functional

units are constructed to each perform more than one instruction

simultaneously.

The integer functional unit 66 performs integer functions

only. Integer operations typically involve a first source, a

second source, and a destination. A given integer instruction

will specify a particular operation to be performed on one or

more source operands and will specify that the result of the

integer operation is to be stored at a given destination. In

some instructions, such as address calculations employed in

load/store operations, the sources are utilized as a base and

an index. The integer functional unit 66 is coupled to a first

bus 72 over which the integer fxinctional unit 66 is connected to

WP2/RCC/SU0S/7988.OO4 / '^W tZy
Attorney Docket No.: SMOS7988/UCF/GBR/RCC /

)

-23-

a switching and multiplexing control (SMC) unit A 74 and an SMC

unit B 76, Each integer instruction executed by the integer

functional unit 66 will specify whether each of its* sources and

destination reside in register set A or register set B.

5 Suppose that the lEU 10 has received, from the instruction

fetch unit (not shown), an instruction to perform an integer

register-to-register addition. In various embodiments, the

instruction may specify a register bank, perhaps even a separate

bank for each source and destination. In one embodiment, the

10 instruction I[l is limited to a thirty-two-bit length, and does
"~t
t=?

g not contain any indication of which register bank 16-0 through

16-n is involved in the instruction. Rather, the bank selector

y unit 78 controls which register bank is presently active. In

^ one embodiment, the bank selector unit 78 is responsive to one

15 or more bank selection bits in a status word (not shown) within

=^ the lEU 10.

In order to perform the integer addition instruction, the

0 integer functional unit 66 is responsive to the identification

in I[14:10] and I [4:0] of the first and second source registers,

20 The integer functional unit 66 places an identification of the

first and second source registers at ports SI and 82,

respectively, onto the integer functional unit bus 72 which is

coupled to both SMC units A and B 74 and 76. In one embodiment,

the SMC units A and B are each coupled to receive BO -2 from the

25 instruction I(] . In one embodiment, a zero in any respective Bn

indicates register set A, and a one indicates register set B.

During load/store operations, the source ports of the integer

WP2/RCCySUOS/7988. 004 .page 23-
Attorney Docket Ko. : SUOS7988/UCF/Ge*yRCC

-24-

and floating point functional units 66 and 68 are utilized as a

base port and an index port/ B and I, respectively,
*

After obtaining the first and second operands from the

indicated register sets on the bus 72, as explained below, the

integer fxinctional unit 66 performs the indicated operation upon

those operands / and provides the result at port D onto the

integer functional unit bus 72, The SMC units A and B are

responsive to BO to route the result to the appropriate register

set A or B.

The SMC unit B is further responsive to the instruction

class; opcode, and function selection to control whether operands

are read from (or results are stored to) either a floating point

register RF[] or an integer register BB[]. As indicated, in one

embodiment, the registers RF[1 may be sixty-four bits wide while

the registers are RB[1 are only thirty-two bits wide. Thus, SMC

unit B controls whether a word or a double word is written to the

register set RFBtJ, Because all registers within register set

A are thirty-two bits wide, SMC unit A need not include means for

controlling the width of data transfer on the bus 42,

All data on the bus 42 are thirty-two bits wide, but other

sorts of complexities exist within register set A. The lEU mode

integer switch 34 is responsive to the mode control unit 44 of

the execution engine 14 to control whether data on the bus 42 are

connected through to bus 36, bus 38 or bus 40, and vice versa,

lEU mode integer switch 34 is further responsive to

I [20:16], I[14:10l, and 1(4:0]. If a given indicated destination

or source is in RA[23:0l, the lED mode integer switch 34

* ^^^^^^^^^^

VfP2/RCC/S«OS/7988. 004 '^X^'lOy^
Attorney Docket SU0S7988/UCF/G8R/RCC (—

^

J

-25-

au1:omat:lcally couples 1:he clat:a between lines 42 and 36. However,

for registers RA(31:24], the lEU mode integer ,'Swi'tch 34
/
m

determines whether data on line 42 is connected to' line 38 or

line 40, and vice versa. When interrupts are enabled, lEtJ mode

integer switch 34 connects the SMC unit A to the second subset

28 o£ integer registers RA[31:24] . When interrupts are disabled,

the lEU mode integer switch 34 connects the SMC unit A to the

shadow registers RT[31:24l. Thus, an instruction executing

within the integer functional unit 66 need not be concerned with

whether to address RA[31:241 or RT[31:24l. It will be understood

that SMC unit A may advantageously operate identically whether

it is being accessed by the integer functional unit 66 or by the

floating point functional unit 68

•

2 . Floating Point Operations

The floating point functional unit 68 is responsive to the

class, opcode, and function select fields of the instruction, to

perform floating point operations. The SI, S2, and D, ports

operate as described for the integer functional unit 66. SMC

unit B is responsive to retrieve floating point operands from,

and to write numerical floating point results to, the floating

point registers RF(] on bus 52.

3 . Boolean Operations

SMC unit C 80 is responsive to the instruction class,

opcode, and function select fields of the instruction 1(1 • When

SMC unit C detects that a comparison operation has been performed

WP2/RCC/SM0S/7988. 004
Attorney Docket No.: SUOS7988/UCf/GBR/RCC

-26-

by one of the numerical functional units 66 or 68, it writes the

Boolean result over bus 56 to the Boolean register indicated at

the D port of the functional \mit which performed the comparison.

The Boolean functional unit 70 does not perform comparison

instructions as do the integer and floating point functional

units 66 and 68~ Rather, the Boolean functional unit 70 is only

used in performing bitwise logical combination of Boolean

register contents, according to the Boolean functions listed in

Table 2.

30

TJ-?.^ .-gS .9.81
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
nil

TABLE 2

Boolean Functions

Boolean -result calculation
ZERO
SI AND S2
SI AND (NOT S2)
SI
(NOT SI) AND S2
S2
SI XOR S2
SI OS. S2
SI NOR S2
SI XNOR S2
NOT S2
SI OR (NOT S2)
NOT SI
(NOT SI) OR 32
SI NAND S2
QUE

The advantage which the present invention obtains by having

a plurality of homogenous Boolean registers, each of which is

individually addressable as the destination of a Boolean

operation, will be explained with reference to Tables 3-5. Table

3 illustrates an example of a segment of code which performs a

conditional branch based upon a complex Boolean function. The

WP2/RCC/SU0S/798S. 004
Attorney Docket No.: S1I0S7988/UCF/GBR/RCC

-27-

complex Boolean function includes three portions which are OR-ed

together. The first portion includes two sub-port^-ons , which

are AND-ed together.

TABLE 3

Example of Complex Boolean Function

1 RA [11 • = 0 /

2 IF (((RA(2] = RAI31) AND (RA(4] > RA(51)) OR
•3 (RAtel < RAt7l) OR
4 (RAI8] <> RAt9l)) THEN
5 X()
6 ELSE
7 Y();
8 RA(10l := 1;

Table 4 illustrates, in pseudo-assembly form, one likely

method by which previous microprocessors would perform the

function of Table 3. The code in Table 4 is written as though

it were constructed by a compiler of at least normal intelligence

operating upon the code of- Table 3. That is, the compiler will

recognize that the condition expressed in lines 2-4 of Table 3

is passed if any of the three portions is true.

WP2/SCC/SUOS/7988. 004
Atteratj Oocktt Ko. : SU0S7988/UCr/GBR/RCC

-28-

TABLE 4
Execut:lon of Complex Boolean Function

Wi-thout Boolean Register Set

1 START LDI RA{ 1] ^0
2 TESTl CMP RA(2l ,RA[31
3 BNE TEST2
4 CMP RA[4l,RA[5l
5 BGT DO IF
6 TEST2 CMP RAI6] ^RA[71
7 BLT DO IF
6 TEST3 CMP RA(81 ^RA[91
9 BEQ DO ELSE
10 DO_TF JSR ADDRESS OF X{)
11 JMP PAST ELSE
12 DO ELSE JSR ADDRESS OF Y{)
13 PAST ELSE LDI RAllO] ,

1

The assignment at line 1 of Table 3 is perfoirmed by the

«*loaa immediate" statement at line 1 of Table 4. The first

portion of the complex Boolean condition, expressed at line 2

of Table 3, is represented by the statements in lines 2-5 of

Table 4. To test whether RA(2l equals RAt3l, the compare

statement at line 2 of Table 4 performs a subtraction of RA[2l

from RA[3l or vice versa, depending upon the implementation, and

may or may not store the result of that subtraction,. The

important function performed by the comparison statement is that

the zero, minus, and carry flags will be appropriately set or

cleared.

The conditional branch statement at line 3 of Table 4

branches to a subsequent portion of code upon the condition that

RAt2] did not equal RA(31. If the two were unequal, the zero

flag will be clear, and there is no need to perform the second

sub-portion. The existence of the conditional branch statement

at line 3 of Table 4 prevents the further fetching, decoding, and

Attorney Docket No,: SUOS7988/UCr/C:R/(tCC

)

-29-.

executing of any subsequent statement in Table 4 until the

results of the comparison in line 2 are known, causing/a pipeline

stall. If the first sub-portion of the first portion (TESTl) is

passed, the second sub-portion at line 4 of Table 4 then compares

RA[4] to RA[51, again setting and clearing the appropriate status

flags

.

If RAI21 equals RA[3l, and RA[4l is greater than RA[51,

there is no need to test the remaining two portions (TEST2 and

TEST3) in the complex Boolean function,, and the statement at

Table 4, line 5, will conditionally branch to the label DO_IF,

to perform the operation inside the "IF" of Table 3. However,

if the first portion of the test is failed, additional processing

is required to determine which of the "IF" and "ELSE" portions

should be executed.

The second portion of the Boolean function is the comparison

of RA[61 to R2l[7], at line 6 of Table 4, which again sets and

clears the appropriate status flags- If the condition "less

than" is indicated by the status flags, the complex Boolean

function is passed, and execution may immediately branch to the

Dp__IF label. In various prior microprocessors, the "less than"

condition may be tested by examining the minus flag. If RA(7l

was not less than RA(6l, the third portion of the test must be

performed. The statement at line 8 of Table 4 compares RA[8] to

RA[9l. If this comparison is failed, the "ELSE" code should be

executed; otheirwise, execution may simply fall through to the

"IF" code at line 10 of Table 4, which is followed by an

additional jxmp around the "ELSE" code. Each of the conditional

WP2/RCC/SU0S/7988. 004 /^'^Pageyls-/
^\

Attorney Docket Ko.: S»OS7988/IICf/G8R/RCC (/)

branches in Table 4, at lines 3^ 5, 7 and 9, results in a

separate pipeline stall, significantly increasing the/processing

time req[uired for handling this complex Boolean function.

The greatly improved throughput which results from employing

the Boolean register set C of the present invention will now

readily be seen with specific reference to Table 5.

TABLE 5

Execution of Complex Boolean Function
With Boolean Register Set

1 START LDI RA[1] ,0
2 TESTl CMP RC[lll ,RA[2] ,RA[3] ^EQ
3 CMP RC[12l ^RA[4] ,RA[5] ,GT
4 TEST2 CMP RC[131 /RA(61 /RA(7] ,LT
.5 TESTS . CMP RC[14] ,RA[8] ,RA(9] ,NE
6 COMPLEX AND RC[15] ,RCt 11] ,RC[12]
7 OR RC[161 ^RC[13] ,RC[141
8 OR RC[17] ,RC(151 ^RCt 16]
9 BC RC[171 ,DO ELSE
10 DO_IF JSR ADDRESS OF X()
11 JMP PAST ELSE
12 DO ELSE JSR ADDRESS OF Y()
13 PAST_ELSE LDI RA[101,1

Most notably seen at lines 2-5 of Table 5^ the Boolean

register set C allows the microprocessor to perform the three

test portions back-to-back without intervening branching. Each

Boolean comparison specifies two operands, a destination, and a

Boolean condition for which to test. For example, the comparison

at line 2 of Table 5 compares the contents of RA12] to the

contents of RA[3], tests them for eq[uality, and stores into

RC[11] the Boolean value of the result of the comparison. Note

that each comparison of th.e Boolean function stores its

respective intermediate results in a separate Boolean register.

As will be understood with reference to the above-referenced

WP2/RCC/SUOS/7988. 004 y^gt la-
Attorney Docket Ko. : SU0S7988/UCF/G6R/iiCC r ^

xelated applications, the lEO 10 is capable of simultaneously

performing more than one of the comparisons .
•

*

After at least the first two comparisons at lines 2-3 of

Table 5 have been completed, the two respective comparison

results are AND-ed together as shown at line 6 of Table 3.

"RC[15l then holds the result of the first portion of the test.

Tbe results of the second and th.ird sub-portions of the Boolean

function are OR-ed together as seen in Table 5, line 7. It will

be understood that, because tbere are no data dependencies

involved, the AND at line 6 and the OR-ed in line 7 may be

performed in parallel. Finally, the results of those two

operations are OR-ed together as seen at line 8 of Table 5. It

will be understood that register RC[17l will then contain a

Boolean value indicating the truth or falsity of the entire

complex Boolean function of Table 3. It is then possible to

perform a single conditional branch, shown at line 9 of Table 5.

In the mode shown in Table 5, tbe method branches to the "ELSE"

code if Boolean register RC[17l is clear, indicating that the

complex function was failed. The remainder of the code may be

tbe same as it was without the Boolean register set as -seen in

Table 4*

The Boolean functional unit 70 is responsive to the

instruction class, opcode, and function select fields as are the

other functional units- Tbus, it will be understood with

reference to Table 5 again, tbat the integer and/or floating

point functional units will perform the instructions in lines 1-5

and 13, and the Boolean functional unit 70 will perform the

WP2/RCC/SU0S/7988. 004 /^>^)
Attorney Oocktt Ho.: SUOS7988/UCF/GSR/RCC f /

-32-

Boolean bitwise combination instructions in lines 6-8. The

control flow and branching instructions in line 9-^2 will be

performed by elements of the lEU 10 which/ are not shovm in

Fig. 1.

III. DATA PATHS

Figs. 2-5 illustrate further details of the data paths

within the floating pointy integer, and Boolean portions of the

lEU , respectively

.

A. Floating Point Portion Data Paths

As seen in Fig. 2, the register set FB 20 is a multi-ported

register set. In one embodiment, the register set FB 20 has two

write ports WFBO-1, .and five read ports RDFBO-4. The floating

point functional unit 68 of Fig. 1 is comprised of the ALU2 102,

FALU 104, MULT 106, and NQLL 108 of Fig. 2. All elements of Fig.

2 except the register set 20 and the elements 102-108 comprise

the SMC unit B of Fig. 1.
.

External, bidirectional data bus EX_DATA(1 provides data to

the floating point load/store unit 122. Immediate floating point

data bus LDF^IMEDt] provides data from a "load immediate"

instruction. Other immediate floating point data are provided

on busses RFF1__IMED and RFF2_IMED, such as is involved in an "add

immediate" instruction. Data are also provided on bus

EX__SR_DT[] , in response to a "special register move" instruction.

Data may also arrive from the integer portion, shown in Fig. 3,

on busses 114 and 120.

WP2/RCC/SU0S/7988. 00*
Attorney Docket No.: SU0S79S8/1ICF/GBR/RCC

-33-

The floating point register set's two write ports WFBO and

WFBl are coupled to write multiplexers 110-0 and 110-1

respectively. The write multiplexers 110 receive data from: the

ALUO or SHFO of the integer portion of Fig. 3; the FALU; the

MULT; the ALU2; either EX_SR_DT[] or LDF_IMED[1; and

EXJDATA[] . Those skilled in the art will understand that control

signals (not shown) determine which input is selected at each

po^t^ and address signals (not shown) determine to which register

the input data are written. Multiplexer control and register

addressing are within the skill of persons in the art, and will

not be discussed for any multiplexer or register set in the

present invention.

The floating point register set's five read ports RDFBO to

RDFB4 are coupled to read multiplexers 112-0 to 112-4,

respectively. The read multiplexers each also receives data

from: either EX_SR_DT[] or LDF_IMED(1, on load immediate bypass

bus 126; a load external data bypass bus 127, which allows

external load data to skip the register set FB; the output of

the ALU2 102, which performs -non-multiplication - integer

operations; the FALU 104, which performs non-multiplication

floating point operations; the MULT 106, which performs

multiplication operations; and either the ALUO 140 or the SHFO

144 of the integer portion shown in Fig. 3, which respectively

perform non-multiplication integer operations and shift

operations. Read multiplexers 112-1 and 112-3 also receive data

from RFF1_IMED(1 and RFF2_IMED[], respectively.

WP2/RCC/SUOS/7988. 004
Attorncr Docket Ho.: SUOS798S/liCF/GBR/RCC

J

-34-

Each arithmetic-type unit 102-106 in the floating point

portion receives two inputs, from respective sets of first and

second source multiplexers SI and S2, The first source of each

unit FALU, and MULT comes from the output of either read

multiplexer 112-0 or 112-2, and the second source comes from the

output of either read multiplexer 112-1 or 112-3. The sources

of the FALU and the MULT may also come from the integer portion

of Fig. 3 on bus 114.

The results of the ALU2, FALU, and MULT are provided back

to the write multiplexers 110 for storage into the floating point

registers RFI], and also to the read multiplexers 1J2 for re-use

as operands of subsequent operations. The FALU also outputs a

signal FALU_BD indicating the Boolean result of a floating point

comparison operation. FALU_BD is calculated directly from

internal zero and sign flags of the FALU.

Null byte tester NULL 108 performs null byte testing

operations upon an operand from a first source multiplexer, in

one mode that of the ALU2. NULL 108 outputs a Boolean signal

NULLB_BD indicating whether- the thirty-two-bit first source

operand includes a byte of value zero.

The outputs of read multiplexers 112-0, 112-1, and 112-4 are

provided to the integer portion (of Fig. 3) on bus 118. The

output of read multiplexer 112-4 is also provided as STDT_FP [1

store data to the floating point load/store unit 122.

Fig. 5 illustrates further details of the control of the

SI and S2 multiplexers. As seen, in one embodiment, each SI

multiplexer may be responsive to bit Bl of the instruction

WP2/RCC/SliOS/79B8. 004
Attorney Docktt Ho.: SUOS7988/UCF/GB2/RCC

J

-35-

and each S2 multiplexer may be responsive to bit B2 of the

instruction ![]• The SI and S2 multiplexers select the sources

for the various functional units. The sources may come from

either of the register files ^ as controlled by the Bl and B2 bits

of the instruction itself. Additionally, each register file

includes two read ports from which the sources may come, as

controlled by hardware not shown in the Figs

.

B. Integer Portion Data Paths

As seen in Fig. 3, the register set A 18 is also

multi-ported. In one embodiment/ the register set A 18 has two

write ports WAO-1, and five read ports RDAO-4. The integer

functional unit 66 of Fig. 1 is comprised of the ALUO 140, ALUl

142, SHFO 144, and NULL 146 of Fig. 3. All elements of Fig. 3

except the register set 18 and the elements 140-146 comprise the

SMC unit A of Fig. 1.

External data bus EX__DATAt] provides data to the integer

load/store unit 152. Immediate integer data on bus LDI_IMED[]

are provided in response to a ""load immediate" instruction.

Other immediate integer data are provided on busses RFA1_IMED and

RFA2_IMED in response to non-load immediate instructions, such

as an "add immediate*. Data are also provided on bus EX_SR_DT[]

in response to a ••special register move" instruction. Data may

also arrive from the floating point portion (shown in Fig. 2)

on busses 116 and 118.

coupled to write multiplexers 148-0 and 148-1, respectively. The

The integer register set's two write ports WAO and WAl are

•P2/RCC/SMOS/7988. 004
cunciooo /u/^c //*oo jof^f*

. .)

-36-

wirltie xnult:lplexers 148 receive data from: the FALU or MOLT of

the floating point portion (of Fig- 2); the ALDO; ; the ALUl;

the SHFO; either EX_SR_DT[1 or LDI_IMED(1;- and Ex£dATA[] .

The integer register set's five read ports RDAO to RDA4 are

coupled to read multiplexers 150-0 to 150-4, respectively. Each

read multiplexer also receives data from: either EX_SR_DT[] or

LDI_IMEDtl on load immediate bypass bus 160; a load external

data bypass bus 154 > which allows external load data to skip the

register set A; ALUO; ALUl; SHFO; and either the FALU or the

MULT of the floating point portion (of Fig. 2). Read

multiplexers 150-1 and 150-3 also receive data from RFA1_IMED(1

and RFA2_IMED[1, respectively.

Each arithmetic-type unit 140-144 in the integer portion

receives two inputs, from respective sets of first and second

source multiplexers SI and S2* The first source of ALUO comes

from either the output of read multiplexer 150-2, or a

thirty-two-bit wide constant zero (OOOOj^^^^) , or floating point

read multiplexer 112-4. The second source of ALUO comes from

either read multiplexer 150^3 or floating point read multiplexer

112-1. The first source of ALUl comes from either read

multiplexer 150-0 or IF_PC[1, IF_PC[] is used in calculating a

return address needed by the instruction fetch unit (not shown) ,

due to the lEU's ability to perform instructions in an

out-of-order sequence. The second source of ALUl comes from

either read multiplexer 150-1 or CF_pFFSET[1 . CF_OFFSET(l is

used in calculating a return address for a CALL instruction, also

due to the out-of-order capability.

WP2/RCC/SU0S/7988. 004 (Page /s- /
Attorney Docket Ko. : SUOS7988/UCF/GBR/RCC ^ /

J

-37-

The first source of the shifter SHFO 144 is from either:

floating point read multiplexer 112-0 or 112-4; or any "integer
T

read multiplexer 150. The second source of SHFO is from either:

floating point read multiplexer 112-0 or 112-4; or integer read

multiplexer -150-0^ 150-2^ or 150-4. SHFO takes a third input

'from a shift amount multiplexer (SA) . The third input controls

how far to shifty and is taken by the SA multiplexer from either:

floating point read multiplexer 112-1; integer read multiplexer

150-1 or 150-3; or a five-bit wide constant thirty-one (IIIII2

or BIj^q), The shifter SHFO requires a fourth input from the size

multiplexer (S) . The fourth input controls how much data to

shift, and is taken by the S multiplexer from either: read

multiplexer 150-1; read multiplexer 150-3; or a five-bit wide

constant sixteen (IOOOO2 or 16^q),

The results of the ALUO, ALUl, and SHFO are provided back

to the write multiplexers 148 for storage into the integer

registers RA(], and also to the read multiplexers 150 for re-use

as operands of subsecjuent operations. The output of either ALDO

or SHFO is provided on„bus-120 to the -floating point portion of

Fig. 3. The ALUO and ALUl also output signals Ar*UO_BD and

AI*U1_BD, respectively, indicating the Boolean results of integer

comparison operations, ALUO_BD and ALU1_BD are calculated

directly from the zero and sign flags of the respective

functional units. ALUO also outputs signals EX_TADR(] and

EX_yM_ADR. EXJTADR[] is the target address generated for an

absolute branch instruction, and is sent to the IFU (not shown)

for fetching the target instruction. EX_VM_ADR[] is the virtual

WP2/RCC/SM0S/7988.004 ^-Pagc/lK^ y/
Attornei Docket No.: SIIO$7988/MCF/C8R/RCC ^ ^^^yC

-38-

address used for all loads from memory and stores to memory, and

is sent to the VMU (not shown) for address translation.

Null byte tester NULL 146 perfojMis - null byte testing

operations upon an operand from a first source multiplexer. In

one embodiment, the operand is from the ALUO. NULL 146 outputs

a Boolean signal SULLA_BD indicating whether the thirty-two-bit

first source operand includes a byte of value zero.

The outputs of read multiplexers 150-0 and 150-1 are

provided to the floating point portion (of Fig. 2) on bus 114.

The output of read multiplexer 150-4 is also provided as

STDT_INT[] store data to the integer load/store unit 152.

A control bit PSR(7] is provided to the register set A 18.

It is this signal which, in Fig. 1, is provided from the mode

control unit 44 to the lED mode integer switch 34 on-line 46.

The lEO mode integer switch is internal to the register set A 18

as shown in Fig. 3.

Fig. 6 illustrates further details of the control of the SI

and S2 multiplexers. The signal ALUO_BD

C. Boolean Portion Dat-a Pal-hg

As seen in Fig. 4, the register set C 22 is also

multi-ported. In one embodiment, the register set C 22 has two

write ports WCO-1, and five read ports RDAO-4.^ All elements of

Fig. 4 except the register set 22 and the Boolean combinational

unit 70 comprise the SMC unit C of Fig. 1.

The Boolean register set's two write ports WCO and WCl are

coupled to write multiplexers 170-0 and 170-1, respectively. The

write multiplexers 170 receive data from: the output of the

Boolean combinational unit 70, indicating the Boolean result of
*

a Boolean combinational operation; ALUO_BD from the integer

portion of Fig, 3/ indicating the Boolean result of an integer

comparison; FALU_BD from the floating point portion of Fig. 2,

indicating the Boolean result of a floating point comparison;

either AIiDl_BD_P from ALUl, indicating the results of a compare

instruction in ALOl, or NULLA_BD from NULL 146 , indicating a null

byte in the integer portion; and either AL02__BD_P from ALU2,

indicating the results of a compare operation in ALU2 , or

NULLB_BD from NULL 108, indicating a null byte in the floating

point portion. In one mode, the ALUO__BD, ALUl^BD^ ALU2_BD, and

FALU^BD signals are not taken from the data paths, but are

calculated as a function of the zero flag, minus flag, carry

flag, and other condition flags in the PSR. In one mode, wherein

up to eight instructions may be executing at one instant in the

lEU, the lEU maintains up to eight PSRs.

The Boolean register set C is also coupled to bus

EX_SR_DT[], for use with "special register move" instructions.

The CSR may be written or read as a whole, as though it were a

single thirty-two-bit register. This enables rapid saving and

restoration of machine state information, such as may be

necessary upon certain drastic system errors or upon certain
*

forms of grand scale context switching.

The Boolean register set's five read ports RDCO to RDC3 are

coupled to read multiplexers 172-0 to 172-4, respectively. The

read multiplexers 172 receive the same set of inputs as the write

¥fP2/RCC/SUOS/7988.004 -filSg, 39,/ /)

-40-

multiplexers 170 receive. The Boolean combinational unit 70

receives inputs from read multiplexers 170-0 and 170-1. Read
*
«

multiplexers 172-2 and 172-3 respectively provide signals

BLBP_CPORT and BLBP_DPORT. BLBP_CPORT is used as the basis for

conditional branching instructions in the lEU. BLBP_DPORT is

used in the "add with Boolean" instruction, which sets an integer

register in the A or B set to zero or one (with leading zeroes),

depending upon the content of a register in the C set. Read port

RDC4 is presently unused, and is reserved for future enhancements

of the Boolean functionality of the lEU.

IV. CONCLUSION

While the features and advantages of the present invention

have been described with respect to particular embodiments

thereof, and in varying degrees of detail, it will be appreciated

that the invention is not limited to the described embodiments.

The following Claims define the invention to be afforded patent

coverage

.

WP2/RCCySU0S/7988. 004

